Parabol Konu Anlatım

dRaqa0

Konu Sahibi
Favori Üye
Katılım
22 Eylül 2008
Mesajlar
2,578
Reaksiyon puanı
103
Puanı
185
Konum
Margáir
Web Sitesi
www.favoriforumum.net
. TANIM
a ¹ 0 ve a, b, c Î IR olmak üzere, f : IR ® IR tanımlanan f(x) = ax2 + bx + c biçimindeki fonksiyonlara ikinci dereceden bir değişkenli fonksiyonlar denir.
İkinci dereceden fonksiyonun analitik düzlemdeki görüntüsüne parabol denir.
Parabol, düzgün tel parça-sının uçlarından tutularak bükülmesiyle oluşan, yandaki gibi kolları yukarıya doğru ya da aşağıya doğru olan bir eğridir.

B. PARABOLÜN TEPE NOKTASI
1) f(x) = ax2 + bx + c fonksiyonunun tepe noktası
T(r, k) olmak üzere,

Ü Parabol
doğrusuna göre simetriktir.
doğrusu parabolün simetri eksenidir.

y = a(x – r)2 + k fonksiyonunun grafiğinin tepe noktası T(r, k) dır.C. GRAFİĞİN EKSENLERİ KESTİĞİ NOKTALAR
Parabolün Ox eksenini kestiği noktalar A ve B, Oy eksenini kestiği nokta C olsun.
ax2 + bx + c = 0 ın kökleri x1 ve x2 ise A(x1, 0), B(x2, 0), C(0, c) dir.
Ü ax2 + bx + c = 0 denkleminde
  • D = b2 – 4ac > 0 ise, parabol Ox eksenini farklı iki noktada keser.
  • D = b2 – 4ac < 0 ise, parabol Ox eksenini kesmez.
  • D = b2 – 4ac = 0 ise, parabol Ox eksenine teğettir.
D. x2 NİN KATSAYISI OLAN a NIN İŞARETİ
1)
a>0 ise parabolün kolları yukarı doğru olup,f(x),in en küçük değeri tepe noktasının ortinatı olan k dır.2) a < 0 ise, parabolün kolları aşağı doğru olup, f(x) in en büyük değeri tepe noktası-nın ordinatı olan k dır.
.a>0 ise parabolün kolları aşağı doğru olup f(fx) in en büyük değeri tepe noktasının ortinatı olan k dır.3) |a| büyüdükçe kollar daralır. Buna göre, yandaki parabollere göre, f deki x2 nin katsayısı, g deki x2 nin katsayısından büyüktür.
|a| büyüdükçe kollar daralır. Buna göre , yandaki parabollere göre ,f deki x2 nin katsayısı g deki x2 nin katsayısından büyüktürf(x) = ax2 + bx + c fonksiyonunun grafiğini çizmek için,
1) Fonksiyonun tepe noktası bulunur.
2) Fonksiyonun eksenleri kestiği noktalar bulunur.
3) a nın işaretine bakılarak parabolün kollarının yönü belirlenir.
E. GRAFİĞİ VERİLEN PARABOLÜN DENKLEMİNİN YAZILMASI
1. Parabolün Ox Eksenini Kestiği Noktalar Biliniyorsa
y = f(x) = a(x – x1) (x – x2) ... (1) dir.
Burada a değerini bulmak için, parabol üzerindeki herhangi bir noktanın değerleri (1) de yazılır.
2. Parabolün Tepe Noktası Biliniyorsa
y = f(x) = a(x – r)2 + k ... (1) dir.
Burada a değerini bulmak için, parabol üzerindeki herhangi bir noktanın değerleri (1) de yazılır.
3. Parabolün Geçtiği Üç Nokta Biliniyorsa
y1 = ax12 + bx1 + c ... (1)
y2 = ax22 + bx2 + c ... (2)
y3 = ax32 + bx3 + c ... (3)
Bu üç denklemi ortak çözerek a, b, c yi buluruz.
F. PARABOL İLE DOĞRUNUN DÜZLEMDEKİ DURUMU
y = f(x) = ax2 + bx + c parabolü ile y = g(x) = mx + n doğrusunu ortak çözelim.
f(x) = g(x)
ax2 + bx + c = mx + n
ax2 + (b – m)x + c – n = 0 ... (*)
(*) denkleminin kökleri (varsa) doğru ile parabolün kesiştiği noktaların apsisleridir.
Buna göre, (*) denkleminde;
  • D > 0 ise, parabol doğruyu farklı iki noktada keser.
  • D< 0 ise, parabol ile doğru kesişmez.
  • D = 0 ise, parabol doğruya teğettir.
Ü y = ax2 + bx + c parabolü ile y = dx2 + ex + f parabolünün düzlemdeki durumu incelenirken yukarıdakine benzer biçimde işlemler yapılır.
 
göster soruyu yardımcı olayım diyeceğim ama çok fazla hatırlamıyorum parabol. benimde tekrar etmem lazım parabolü. Parabolde alan bence lisenin ilk 2 senesinin en zor konusu.
 
Bişi anlamadım Vallaaha
 
sen ilköğretim öğrencisiydin diye hatırlıyorum xd
 
sana demiyorum

berk demiş anlamadım diye de bildiğim kadarıyla ilköğretimlere böyle absürd konular vermezler
 
para bende de bol gibi klasik bir espri yapmıycam